Processing of Complex Stock Market Events Using Background Knowledge
نویسندگان
چکیده
Usage of background knowledge about events and their relations to other concepts in the application domain, can improve the quality of event processing. In this paper, we describe a system for knowledge-based event detection of complex stock market events based on available background knowledge about stock market companies. Our system profits from data fusion of live event streams and background knowledge about companies which are stored in a knowledge base. Users of our system can express their queries in a rule language which provides functionalities to specify semantic queries about companies in the RDF SPARQL language for querying the external knowledge base and combine it with event data streams. Background makes it possible to detect stock market events based on companies attributes and not only based on syntactic processing of stock price and volume.
منابع مشابه
Sectoral Growth and Centrality in Stock Market in Iran: Application of Complex Network Analysis
Stock price and its changes which reflect the individuals’ investment decisions in economic environment are the most important factors in evaluating the economic value of a company in stock market. Stock price changes are not independent of each other. Therefore, study of the correlation between stock price changes provides a better understanding of market performance for investors. Analysis of...
متن کاملارائه شاخصی جدید برای انعکاس رفتار بازار سهام با استفاده از رویکرد تحلیل شبکههای پیچیده
شاخصهای منعکس کننده رفتار بازار سهام یکی از مهمترین عوامل تأثیرگذار بر تصمیمات سرمایهگذاران در بازارهای مالی است. اغلب سرمایهگذاران در بورس اوراق بهادار تهران به شاخص کل بورس توجه دارند که تمامی شرکتهای پذیرفته شده در بورس را در بر میگیرد. این مطالعه به معرفی شاخصی جدید با استفاده از روش شبکههای پیچیده میپردازد. شبکههای پیچیده مطالعه همبستگی قیمتهای بازار سهام را به خوبی فراهم میآور...
متن کاملModeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh
This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively. Furthermore, the study explores the adequate volatility model for the stoc...
متن کاملKnowledge-Driven Event Embedding for Stock Prediction
Representing structured events as vectors in continuous space offers a new way for defining dense features for natural language processing (NLP) applications. Prior work has proposed effective methods to learn event representations that can capture syntactic and semantic information over text corpus, demonstrating their effectiveness for downstream tasks such as event-driven stock prediction. O...
متن کاملThe Role of Service Marketing Mix to Attract the LSEs in Tehran Stock Exchange
Since the 1970s, services marketing has grown into a major sub discipline of marketing. It is constantly claimed – but is refuted in the article – that services are now the dominant economic activity in developed countries and keeps growing while the two traditional goods sectors, manufacturing and agriculture, are declining. In today's competitive world, having expertise, knowledge and marketi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011